Tuesday, June 25, 2013

Why Does the Sun s Corona Get So Hot? NASA Launches Telescope to Find Out

As plasma is ejected from the sun?s surface, its temperature skyrockets--and so far physicists have not been able to explain why


NASA's Interface Region Imaging Spectrograph

SOLAR SPOTTER: NASA's IRIS in the clean room, preparing for launch. Image: LMSAL

  • Showcasing more than fifty of the most provocative, original, and significant online essays from 2011, The Best Science Writing Online 2012 will change the way...

    Read More??

Above the surface of the sun, plasma roiling in the star?s atmosphere does something that so far defies explanation, and seems to defy physics: It gets hotter as it moves farther out.

In the corona, the expansive outer layer of the solar atmosphere that extends millions of kilometers from the sun?s surface, temperatures reach millions of kelvins. The surface, by contrast, is a tepid 6,000 K (around 5,700 degrees Celsius). Although astronomers have developed a few possible explanations in recent years, no one can say precisely how or why the corona gets so hot. A new satellite will scrutinize the underlying regions of the sun?s atmosphere, giving physicists a chance to dig down like botanists studying a plant?s roots and uncover information that may help them solve the mystery.

The satellite?NASA?s Interface Region Imaging Spectrograph (IRIS), a new ultraviolet space telescope?will examine the chromosphere, a long-ignored layer of plasma beneath the corona, in unprecedented detail. ?I wonder if maybe we were staring too hard at the corona to understand the corona,? says IRIS scientist Charles Kankelborg, a physicist at Montana State University. ?It may be that by backing out we can get some vital clues to what?s happening.?

A carrier aircraft will carry IRIS and a Pegasus rocket booster aloft from Vandenberg Air Force Base in California on June 26, and then launch it from there into a polar orbit. From that vantage point the telescope will observe a small section of the chromosphere, a violently variable region between the corona and the surface. IRIS will not only photograph the sun but will also return spectra?detailed breakdowns of the star?s light that can reveal subtle physical processes at work. Other telescopes, such as the Sunrise 2 balloon that recently completed a five-day flight around the Arctic circle, have looked at the chromosphere but haven?t returned such detailed information. ?You won?t just see beautiful images with fine-scale structure, but you?ll also be able to measure what the temperature is and what the density is,? says Eric Priest, a solar physicist at the University of Saint Andrews in Scotland who is not part of the IRIS team. ?It?s revolutionary.?

Unlike the corona?s wispy prominences or the spotted, fiery surface, the chromosphere is tricky to behold. It absorbs and reemits some light from the surface, but it also emits its own UV light, making it difficult to identify where the photons originated, says Bart de Pontieu, the science lead for IRIS at the Lockheed Martin Solar and Astrophysics Laboratory in Palo Alto, Calif. Only in the last 10 years have physicists developed computer models sophisticated enough to track the photons coming from this region and to sufficiently simulate chromospheric activity. That is a key reason why IRIS?s time is now. ?With these models we have now a fighting chance of understanding the light that we see coming from the chromosphere,? de Pontieu says.

Physicists are also eager to observe solar outbursts with IRIS. And they should see plenty: IRIS will launch near the peak of the sun?s 11-year activity cycle. The IRIS team will use information from other satellites that observe the whole sun, such as Japan?s Hinode and NASA?s Solar Dynamics Observatory, to identify active areas of the sun and point IRIS toward flares as they grow, when it will obtain spectra every two seconds. De Pontieu compares the mission with studying the air just above the ocean, watching as water evaporates and condenses: ?You?re seeing the process that feeds the clouds, and the process that depletes the clouds. By figuring what?s going in and out, you can figure out what?s going on up there.?

Source: http://www.scientificamerican.com/article.cfm?id=iris-satellite-launch

joe paterno British Open MC Chris Colorado shooting suspect Finding Nemo 2 Provigil dez bryant

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.